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Probabilistic Fault Diagnosis and its Analysis in Multicomputer
Systems∗

Manabu KOBAYASHI†a), Member, Toshiyasu MATSUSHIMA†, and Shigeichi HIRASAWA†, Fellows

SUMMARY F.P. Preparata et al. have proposed a fault diagnosis model
to find all faulty units in the multicomputer system by using outcomes which
each unit tests some other units. In this paper, for probabilistic diagnosis
models, we show an efficient diagnosis algorithm to obtain a posteriori
probability that each of units is faulty given the test outcomes. Furthermore,
we propose a method to analyze the diagnostic error probability of this
algorithm.
key words: multicomputer systems, system-level fault diagnosis, proba-
bilistic fault diagnosis, intermittent faults, density evolution

1. Introduction

The problem of finding faulty units in the multicom-
puter/multiprocessor system has been investigated for a large
variety of models. F.P. Preparata et al. have proposed a fault
diagnosis model to find all faulty units by using outcomes
that each unit independently tests some other units [1]. Then
the outcome which a faulty unit tests cannot be trusted in
this model. Under the assumption that the outcome which a
fault-free unit tests other fault-free units can be trusted, the
diagnosis algorithms to identify faulty units have been pro-
posed in many literatures [2]–[11]. Furthermore, S. Mallela
et al. have proposed the intermittent fault model that the test
outcome is probabilistically incorrect when a fault-free unit
tests a faulty unit [12]. A general probabilistic fault model
including the intermittent fault model has been proposed by
M. Blount [13]. Diagnosis algorithms for this probabilis-
tic fault model have been proposed by D.M. Blough et al.
[15], [16], S. Lee et al. [17] and M. Kobayashi et al. [18].
These models are called a directed graph model since the
relations which each unit tests other units can be represented
as a directed graph.

On the other hand, another model, which is called an
undirected model or a comparison-based model, has been
investigated in several literatures [19]–[26]. In this model,
two units which are assigned to the edge of an undirected
graph carry out the same job, and their outputs are compared.
The diagnosis algorithm identifies faulty units by using these
comparison outcomes.

Furthermore, a diagnosis method which finds all faulty
units at once by using all test outcomes is called a one-step
diagnosis. In contrast, a sequential diagnosis iterates to di-
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agnose and repair after units estimated as faulty are repaired
(or replaced with new units). In an adaptive diagnosis, addi-
tionally, test assignments are dynamically determined after
checking the results of previous test outcomes.

In this paper, we aim at a one-step diagnosis of a prob-
abilistic diagnosis model in a directed graph model. First,
we show an efficient diagnosis algorithm which calculates
a posteriori probability that each of units is faulty given
the test outcomes. This algorithm is essentially identical
to the Sum-Product algorithm [28] which can be used for
more general case in machine learning theory and coding
theory. Furthermore, we propose a method to analyze the
diagnostic error probability of this algorithm. Finally, we
show the results of the computer simulations and numerical
results of the diagnostic error probability for the evaluation
of effectiveness.

2. Fault Diagnosis System and Probabilistic Model

A system consists of a set of N units∗∗, and for each unit
the distinct ID number from among 1, 2, . . . , N is allocated
for identification. Each unit has communication links to
other several units and is assumed to be capable of testing
faulty/fault-free status of units with communication links.
Then the system is modeled by a directed graph G = (U, E),
where U = {1, 2, . . . , N } is the set of vertices representing
the units, and each edge ( j, i) ∈ E represents that a unit j
tests a unit i. Faulty/fault-free status of a unit i ∈ U will
be denoted by xi , where xi = 1 if i is faulty and xi = 0
if i is fault-free. For each edge ( j, i) ∈ E, test outcome is
represented by s ji such that s ji = 1 if i fails j’s test and
s ji = 0 if i passes j’s test, i.e. s ji = 1 if a unit j evaluates
that a unit i is faulty, otherwise s ji = 0. Note that a test
outcome s ji may be incorrect, i.e. xi , s ji . Let s denote
a vector whose elements consist of s ji for all ( j, i) ∈ E,
and we define x = (x1, . . . , xN ) ∈ {0, 1}N . Given a testing
graph G = (U, E) and all test outcomes s, a fault diagnosis
algorithm estimates x.

For a given unit i ∈ U, let Γ(i) denote the set of units
that i tests, i.e. Γ(i) = {k ∈ U |(i, k) ∈ E}. Inversely, let
Γ−1(i) denote the set of units that test i, i.e. Γ−1(i) = { j ∈
U |( j, i) ∈ E}.

Example 1: In Fig. 1, we show an example of the case
∗∗A unit represents a computer (or a processor) in the multicom-

puter (or multiprocessor) system.

Copyright © 2018 The Institute of Electronics, Information and Communication Engineers
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Fig. 1 An example of the fault diagnosis system.

where units 5, 9 and 10 are faulty for N = 10. The number
in the circle represents the unit ID. In this case, G = (U, E)
where U = {1, 2, . . . , 10} and E = {(1, 6), (1, 7), (2, 7), (2, 8),
(3, 8), (3, 9), (4, 9), (4, 10), (5, 6), (5, 10), (6, 2), (6, 4), (7, 3),
(7, 5), (8, 1), (8, 4), (9, 2), (9, 5), (10, 1), (10, 3)}. Therefore,
Γ(1) = {6, 7}, Γ(2) = {7, 8}, Γ(3) = {8, 9}, Γ−1(1) = {8, 10},
Γ−1(2) = {6, 9}, Γ−1(3) = {7, 10} and so on. Since
only units 5, 9 and 10 are faulty, x = (x1, x2, . . . , x10) =
(0, 0, 0, 0, 1, 0, 0, 0, 1, 1). In Fig. 1, the label of each edge
( j, i) ∈ E represents the test outcome s ji . Therefore, a vec-
tor of all test outcomes s is as follows:

s = (s16, s17, s27, s28, s38, s39, s49, s4 10, s56, s5 10,

s62, s64, s73, s75, s81, s84, s92, s95, s10 1, s10 3)
= (0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1).

□

In order to consider the probabilistic diagnosis, we de-
fine the probabilistic model of faults and test outcomes as
follows.

Definition 1: For a given unit i, let P(xi) denote the
probability mass function(PMF) of xi and we assume that
xi is independent from fault statuses of other units, i.e.
P(x) = ΠN

i=1P(xi). For a given edge ( j, i) ∈ E, we as-
sume that a test outcome s ji depends only on fault statuses
x j and xi , i.e. P(s ji |x) = P(s ji |x j, xi). For convenience
of description, we define Px j,xi (s ji ) = P(s ji |x j, xi), e.g.
P1,0(s ji) = P(s ji |x j = 1, xi = 0) and so forth. □

For the ordinary fault diagnosis model, it is assumed
that P0,0(s ji = 1) = 0 for all ( j, i) ∈ E. If the outcome s ji
which a fault-free unit j tests a faulty unit i may be incorrect
evaluation†, the diagnosis model is called an intermittent
fault model. Note that an intermittent fault model can be
represented by P0,1(s ji = 0) > 0.

In this paper, we assume that the PMFs P(xi) and
Px j,xi (s ji) are given.

There are a few probabilistic fault diagnosis algorithms
in the current literature which are closely related to the di-
agnosis algorithms that we present in this paper. For exam-
ple, probabilistic fault diagnosis algorithms have proposed
†That is, s ji = 0 despite of xi = 1.

by D.M. Blough et al. [15], [16] and S. Lee et al. [17]††.
The diagnosis algorithm proposed by D.M. Blough et al.
[15], [16], which is called the BSM algorithm, diagnoses a
unit i as faulty if and only if the following Eq. is satisfied†††:

∑
j∈Γ−1 (i)

{
2s ji − P(x j = 1) − P(x j = 0)P0,1(s ji = 1)

}
> 0. (1)

Improving Eq. (1), furthermore, S. Lee et al. have proposed
the diagnosis algorithm Opt3 which diagnoses a unit i as
faulty if and only if the following Eq. is satisfied:

1
/{

1 +
P(xi = 0)
P(xi = 1)

∏
j∈Γ−1 (i) |sj i=1

(
β ji

α ji

)
×

∏
j∈Γ−1 (i) |sj i=0

(1 − β ji
1 − α ji

) }
> 0.5, (2)

where

α ji = P(x j = 0)P0,1(s ji = 1) + P(x j = 1)P1,1(s ji = 1),
β ji = P(x j = 1)P1,0(s ji = 1). (3)

The diagnostic error probability of Opt3 is less than or equal
to that of the BSM algorithm [17]. Furthermore, S. Lee et
al. have proposed the improved algorithm Opt2 which uses
the relation P0,0(s ji = 1) = 0. The worst-case complexities
of Opt3 and Opt2 are O( |E |) and O(N2), respectively [17].

3. Maximum A Posteriori (MAP) Diagnosis Algorithm

We assume that a testing graph in this section satisfies that
(i, j) < E for all ( j, i) ∈ E, i.e. if j ∈ U tests i ∈ U then i
doesn’t test j. Let G̃ denote a set of such testing graphs.

Definition 2: For given two graphs G1 = (U1, E1) and G2 =
(U2, E2), the union of G1 and G2 is denoted by G1 ∪ G2 =
(U1 ∪U2, E1 ∪ E2).

For a given testing graph G = (U, E) ∈ G̃ and ( j, i) ∈
E, let gji denote a sub-graph which consists of units i, j and
only one edge ( j, i), i.e. gji = ({i, j}, {( j, i)}). Given a unit
j ∈ U, let a testing sub-graph G(0)

j = G(0)
j\i = ({ j}, ∅).

For a given testing graph G = (U, E) and any l ≥ 1,
let testing sub-graphs G(l)

i and G(l)
i\h be defined recursively

as follows:

G(l)
i\h =

∪
j∈Γ−1 (i)\{h }

(
G(l−1)

j\i ∪ gji
)
∪

∪
k∈Γ(i)\{h }

(
G(l−1)

k\i ∪ gik
)
,

(4)

G(l)
i =

∪
j∈Γ−1 (i)

(
G(l−1)

j\i ∪ gji
)
∪

∪
k∈Γ(i)

(
G(l−1)

k\i ∪ gik
)
. (5)

□

††Note that these algorithms assume that P0,0(s ji = 1) = 0.
†††That is, the BSM algorithm outputs x̂i = 1.



2074
IEICE TRANS. FUNDAMENTALS, VOL.E101–A, NO.12 DECEMBER 2018

s62=0

s16=0

1

x1=0

2 x2=0

3

x3=0

4

x4=0

5

x5=1

6 x6=0 9 x9=1

s92=1

s56=1 s39=1 s49=1

4 x4=0 5x5=1

7 x7=0 8 x8=0

s64=0 s95=0

3x3=0

s38=0s17=0

1 x1=0

3
x3=0

5
x5=1

s73=0 s75=1

1
x1=0

s81=0 s84=0

4
x4=0

s27=0 s28=0

Fig. 2 A tree expansion of a testing sub-graph G(2)
2 .

Definition 3: Given a constant L, let G (L) denote a set of
testing graphs G ∈ G̃ such that there is no cycles when we
regard all directed edges of G(L)

i as undirected ones for all
i ∈ U. In other words, for G ∈ G (L) and each i ∈ U, G(L)

i is
a tree structure. □

Example 2: We consider a testing graph G of Exam-
ple 1. From Definition 2, G(0)

j\i = ({ j}, ∅) for all j ∈
U. For example, from Eq. (5) G(1)

1 = ({1, 6, 7, 8, 10},
{(1, 6), (1, 7), (8, 1), (10, 1)}), G(1)

2 = ({2, 6, 7, 8, 9}, {(2, 7),
(2, 8), (6, 2), (9, 2)}) and so forth. From Eq. (4) G(1)

2\6 =

({2, 7, 8, 9}, {(2, 7), (2, 8), (9, 2)}), G(1)
2\7 = ({2, 6, 8, 10},

{(2, 8), (6, 2), (9, 2)}), and so forth. As a result, for G of
Fig. 1 from Definition 3 it follows that G ∈ G (1) since for
each i ∈ U there is no cycles when we regard all directed
edges of G(1)

i as undirected ones.
Next, G(2)

2 =
(
G(1)

6\2 ∪ g62
)
∪

(
G(1)

7\2 ∪ g27
)
∪(

G(1)
8\2 ∪ g28

)
∪

(
G(1)

9\2 ∪ g92
)
, G(2)

2\6 =
(
G(1)

7\2 ∪ g27
)
∪(

G(1)
8\2 ∪ g28

)
∪

(
G(1)

9\2 ∪ g92
)

and so on.
In Fig. 2, a tree expansion of a testing sub-graph G(2)

2
is shown. There are some same units in this figure. This
implies that G(2)

2 has some cycles by regarding as undirected
edges. Therefore, G < G (2) . □

Definition 4: Given l ≥ 1 and G(l)
i = (U (l)

i , E
(l)
i ) for

G = (U, E), let x(l)
i denote a vector whose elements con-

sist of xh for all h ∈ U (l)
i , i.e. x(l)

i = (xh)
h∈U (l)

i
. Let

s(l)
i denote a vector whose elements consist of test out-

comes skh for all (k, h) ∈ E (l)
i , i.e. s(l)

i = (skh)(k,h)∈E (l)
i

.

Similarly, given G(l)
i\j = (U (l)

i\j, E
(l)
i\j ), x(l)

i\j = (xh)
h∈U (l)

i\ j
and

s(l)
i\j = (skh)(k,h)∈E (l)

i\ j
. Let s(0)

i and s(0)
i\j be the empty se-

quence, respectively. □

Theorem 1: Given G = (U, E) ∈ G (L), for any i ∈ U and
l < L the following equation holds.

ln
P(xi = 0|s(l+1)

i )

P(xi = 1|s(l+1)
i )

= ln
P(xi = 0)
P(xi = 1)

+
∑

j∈Γ−1 (i)

ln
∑

x j
P(s ji |x j, xi = 0)P(x j |s(l)

j\i)∑
x j

P(s ji |x j, xi = 1)P(x j |s(l)
j\i)

+
∑

k∈Γ(i)

ln
∑

xk P(sik |xi = 0, xk )P(xk |s(l)
k\i)∑

xk P(sik |xi = 1, xk )P(xk |s(l)
k\i)
. (6)

Proof: It is shown in Appendix A. □

P(x j |s(l)
j\i) must be calculated to obtain P(xi |s(l+1)

i ) in
Theorem 1. The following theorem is used for this purpose.

Theorem 2: Given G = (U, E) ∈ G (L), the following equa-
tion holds for any i ∈ U, h ∈ Γ−1(i) ∪ Γ(i) and l < L.

ln
P(xi = 0|s(l+1)

i\h )

P(xi = 1|s(l+1)
i\h )

= ln
P(xi = 0)
P(xi = 1)

+
∑

j∈Γ−1 (i)\{h }
ln

∑
x j

P(s ji |x j, xi = 0)P(x j |s(l)
j\i)∑

x j
P(s ji |x j, xi = 1)P(x j |s(l)

j\i)

+
∑

k∈Γ(i)\{h }
ln

∑
xk P(sik |xi = 0, xk )P(xk |s(l)

k\i)∑
xk P(sik |xi = 1, xk )P(xk |s(l)

k\i)
. (7)

Proof: This can be proved in almost the same way as Theo-
rem 1. □

Theorem 2 implies that the log posteriori probability

ratio ln
P(xi=0 |s(l+1)

i\h )

P(xi=1 |s(l+1)
i\h )

can be efficiently calculated for any

h ∈ Γ−1(i) ∪ Γ(i) from Eq. (7) as soon as P(x j |s(l)
j\i) are

calculated for any i ∈ U and all j ∈ Γ−1(i) ∪ Γ(i). Using
Theorems 1 and 2, the diagnosis algorithm which calculates
ln P(xi=0 |s(l+1)

i )

P(xi=1 |s(l+1)
i )

efficiently is as follows, where lmax is a con-
stant which implies the iteration number of the algorithm.

[MAP Diagnosis Algorithm(MAPDA) ]
1) Let l := 0. For all i ∈ U and j ∈ Γ−1(i), k ∈ Γ(i),

a(0)
ik
= c(0)

ji = t (0)
i := ln

P(xi = 0)
P(xi = 1)

. (8)

2) For all i ∈ U, execute the following steps:

i) For all j ∈ Γ−1(i) and k ∈ Γ(i), b(l+1)
ji and d (l+1)

ik
are
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calculated by the following formulas.

b(l+1)
ji := ln

P0,0(s ji) exp(a(l)
ji ) + P1,0(s ji)

P0,1(s ji) exp(a(l)
ji ) + P1,1(s ji)

. (9)

d (l+1)
ik

:= ln
P0,0(sik ) exp(c(l)

ik
) + P0,1(sik )

P1,0(sik ) exp(c(l)
ik

) + P1,1(sik )
. (10)

ii) t (l+1)
i is calculated by the following.

t (l+1)
i := t (0)

i +
∑

j∈Γ−1 (i)

b(l+1)
ji +

∑
k∈Γ(i)

d (l+1)
ik
. (11)

iii) For all j ∈ Γ−1(i) and k ∈ Γ(i), a(l+1)
ik

and c(l+1)
ji are

updated by the following formulas.

a(l+1)
ik

:= t (l+1)
i − d (l+1)

ik
. (12)

c(l+1)
ji := t (l+1)

i − b(l+1)
ji . (13)

3) If l + 1 = lmax, then output Eq. (14) and halt; otherwise
set l := l + 1 and go to 2).

x̂i :=
0, t (lmax)

i ≥ 0,
1, otherwise.

(14)

□

The complexity of this algorithm is O( |E |) since lmax
is a constant and the following holds.∑

i∈U
(|Γ−1(i) | + |Γ(i) |) = 2|E |. (15)

Theorem 3: Given G ∈ G (L) , for any 0 ≤ l ≤ L of the
MAPDA

ln
P(xi = 0|s(l)

i\h)

P(xi = 1|s(l)
i\h)
=


a(l)
ih
, i ∈ Γ−1(h),

c(l)
hi
, i ∈ Γ(h).

(16)

Proof: It is shown in Appendix B. □

From this theorem, the following theorem holds for the
MAPDA.

Theorem 4: Given G ∈ G (L) , the following Eq. holds for
any 0 ≤ l ≤ L.

t (l)
i = ln

P(xi = 0|s(l)
i )

P(xi = 1|s(l)
i )
. (17)

Proof: If l = 0, Eq. (17) holds from the step 1) of the
MAPDA since s(0)

i is empty sequence from Definition 4.
If l > 0, then Eq. (17) holds from Theorems 1, 3 and

the step 2) of the MAPDA. □

If G ∈ G (L) and lmax ≤ L, then for the step 3) of the

MAPDA the following Eq. holds from Theorem 4.

x̂i = arg max
xi ∈{0,1}

P(xi |s(lmax)
i ). (18)

This implies that the MAPDA estimates x̂i by the maximum
a posteriori probability.

It is obviously possible to use the MAPDA for the case
where lmax > L. In this case, Eq. (17) doesn’t hold exactly.
However, t (l)

i can be considered as an approximated value of
the right-hand side of Eq. (17).

Next, we describe the ranges of b(l+1)
ji and d (l+1)

ji of
Eqs. (9) and (10), respectively. Given s ji and sik , we put
B1, B2, D1 and D2 as follows:

B1 = lim
a(l+1)
j i →∞

b(l+1)
ji = ln

P0,0(s ji) + P1,0(s ji)
P0,1(s ji) + P1,1(s ji)

, (19)

B2 = lim
a(l+1)
j i →−∞

b(l+1)
ji = ln

P0,0(s ji)
P0,1(s ji)

, (20)

D1 = lim
c(l+1)
ik
→∞

d (l+1)
ik

= ln
P0,0(sik ) + P0,1(sik )
P1,0(sik ) + P1,1(sik )

, (21)

D2 = lim
c(l+1)
ik
→−∞

d (l+1)
ik

= ln
P0,0(sik )
P1,0(sik )

. (22)

Then, the following inequalities hold from the simple calcu-
lation.

B1 < b(l+1)
ji < B2 if P1,0(s ji )P0,1(s ji )<P0,0(s ji)P1,1(s ji )

B1 = b(l+1)
ji = B2 if P1,0(s ji )P0,1(s ji )=P0,0(s ji)P1,1(s ji)

B1 > b(l+1)
ji > B2 if P1,0(s ji )P0,1(s ji )>P0,0(s ji)P1,1(s ji)

(23)
D1< d (l+1)

ik
<D2 if P1,0(sik )P0,1(sik )<P0,0(sik )P1,1(sik )

D1=d (l+1)
ik
=D2 if P1,0(sik )P0,1(sik )=P0,0(sik )P1,1(sik )

D1> d (l+1)
ik
>D2 if P1,0(sik )P0,1(sik )>P0,0(sik )P1,1(sik )

(24)

Note that if P1,0(s ji )P0,1(s ji) = P0,0(s ji)P1,1(s ji), then
b(l+1)
ji is a constant independent of the value of a(l+1)

ji . d (l+1)
ik

is also the same.
Here, we discuss the difference with our previous

method [18] to calculate the maximum a posteriori of a
testing sub-graph as shown in Fig. 3. A testing sub-graph
G̃(L)

i = (Ũ (L)
i , Ẽ

(L)
i ) in Fig. 3 is defined as a directed sub-

graph of depth L that reaches unit i for given testing graph G.
Comparing with G(L)

i = (U (L)
i , E

(L)
i ) of Fig. 2, it is obvious

that Ẽ (L)
i ⊂ E (L)

i . Therefore, we can expect to improve the
diagnostic error probability of the previous method [18]. In
Table 1, we show the construction of the sub-graph used in
the fault diagnosis and corresponding diagnosis method.

The MAPDA is essentially identical to the Sum-Product
algorithm [28] which can be used for more general case in
machine learning theory. In this paper, we directly obtained
the diagnosis algorithm by deriving Theorems 1 and 2 from
the structure of the testing graph instead of deriving the Sum-
Product algorithm by considering the factor graph [28] of the
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Fig. 3 A testing sub-graph G̃(2)
2 of [18].

Table 1 Sub-graph and property used in fault diagnosis and correspond-
ing diagnosis method.

Used Sub-Graph and Property Probabilistic Fault Diagnosis Method

G̃(1)
i BSM[15,16], Opt3[17]

G̃(1)
i and P0,0 (sj i = 1) = 0 Opt2[17]

G̃(L)
i MAPDA[18] for G̃(L)

i

G(L)
i This study

diagnosis system.
The evaluation of the diagnostic error probability using

the computer simulation is shown in Sect. 5.

4. Analysis of MAP Diagnosis Algorithm

In coding theory, T.J. Richardson et al. have proposed the
density evolution method to calculate the decoding error
probability of low-density parity-check(LDPC) codes [29].
The decoding algorithm of LDPC codes is also a special case
of the Sum-Product algorithm. In this section, we show a
method, which is an application of the density evolution for
the diagnosis system, to calculate the diagnostic error prob-
ability of the MAPDA. Since the MAPDA is different from
the decoding algorithm of LDPC codes, we will formulate
the density evolution method for the MAPDA from the start.

In this section, we assume that G ∈ G (L) and lmax ≤ L
for the MAPDA†.

Definition 5: Capital letters Xi and Sji represent the ran-
dom variables corresponding to xi and s ji , respectively.
Similarly, A(l)

ji , B(l)
ji , C (l)

ji , D(l)
ji and T (l)

i represent the ran-
dom variables corresponding to a(l)

ji , b
(l)
ji , c

(l)
ji , d

(l)
ji and t (l)

i in
the MAPDA.

In general, let fY (y) denote the probability density
function(PDF) of a random variable Y . Similarly, let
fY |Z (y |z) denote the conditional PDF of a random variable
Y given a random variable Z . For simplicity, we may omit
random variables of the PDF in the absence of confusion,
e.g. f (y) and f (y |z). □
†In this paper, we treat the case where a testing graph G is given,

though the random graph ensemble is often used for an analysis of
LDPC codes with large code length. This is because the number of
units N is a constant given by the fault diagnosis system, and N is
not large compared with the code length of the LDPC codes.

First, we show the PDF for Eq. (8) in the MAPDA. Let-
ting t̃i = ln P(xi=0)

P(xi=1) , the variables of Eq. (8) are necessarily
identical to t̃i . Using the Dirac delta function δ, therefore,
the PDFs of these variables are as follows.

f
A(0)
ik
|Xi

(y |x) = f
C (0)

j i |Xi
(y |x) = f

T (0)
i |Xi

(y |x)

= δ(y − t̃i). (25)

Next, we consider the PDFs for Eqs. (9) and (10). If
P1,0(s ji )P0,1(s ji) = P0,0(s ji )P1,1(s ji), then b(l+1)

ji is a con-
stant. Using B1 of Eq. (19), in this case, it holds that

f
B(l+1)

j i |S j i,Xj,Xi
(b(l+1)

ji |s ji, x j, xi) = δ(b(l+1)
ji −B1). (26)

Similarly, if P1,0(sik )P0,1(sik ) = P0,0(sik )P1,1(sik ), then

f
D(l+1)

ik
|Sik,Xi,Xk

(d (l+1)
ik
|sik, xi, xk ) = δ(d (l+1)

ik
− D1).

(27)

Next, we consider the case where b(l+1)
ji and d (l+1)

ik
are

not constant. Let gA(b(l+1)
ji , s ji) denote the function which

calculates a(l)
ji from b(l+1)

ji and s ji for Eq. (9), i.e. a(l)
ji =

gA(b(l+1)
ji , s ji). Similarly, let gC (d (l+1)

ik
, sik ) denote the func-

tion which calculates c(l)
ik

from d (l+1)
ik

and sik for Eq. (10),
i.e. c(l)

ik
= gC (d (l+1)

ik
, sik ). Then the following equations hold

from Eqs. (9) and (10).

gA(b(l+1)
ji , s ji) = ln

P1,0(s ji) − eb
(l+1)
j i P1,1(s ji)

eb
(l+1)
j i P0,1(s ji) − P0,0(s ji)

, (28)

gC (d (l+1)
ik
, sik ) = ln

P0,1(sik ) − ed
(l+1)
ik P1,1(sik )

ed
(l+1)
ik P1,0(sik ) − P0,0(sik )

. (29)

Note that the functions gA and gC are bijections given s ji and
sik , respectively. Given s ∈ {0, 1}, let g′A(b, s) and g′C (d, s)
denote the derivatives with respect to b and d for the func-
tions gA(b, s), b ∈ (−∞,∞), and gC (d, s), d ∈ (−∞,∞),
respectively. Furthermore, note that A(l)

ji and Xi are condi-
tionally independent given Sji . Similarly, C (l)

ik
and Xi are

conditionally independent given Sik . Using change of vari-
able, therefore, the following equations hold.

f
B(l+1)

j i |S j i,Xj,Xi
(b(l+1)

ji |s ji, x j, xi)

= f
A(l)

j i |Xj
(gA(b(l+1)

ji , s ji ) |x j )
���g′A(b(l+1)

ji , s ji)
��� , (30)

f
D(l+1)

ik
|Sik,Xi,Xk

(d (l+1)
ik
|sik, xi, xk )

= f
C (l)

ik
|Xk

(gC (d (l+1)
ik
, sik ) |xk ) ���g′C (d (l+1)

ik
, sik )��� , (31)

where g′A(b, s) and g′C (d, s) are given in Eqs. (32) and (33),
respectively. As a result, given f (a(l)

ji |x j ) and f (c(l)
ik
|xk ),

f (b(l+1)
ji |xi) and f (d (l+1)

ik
|xi) can be calculated as follows by

using Eqs. (30) and (31), respectively.
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g′A(b, s ji ) = eb
(
P1,1(s ji)P0,0(s ji ) − P1,0(s ji )P0,1(s ji)

)
/
{(

ebP0,1(s ji ) − P0,0(s ji )
) (

P1,0(s ji) − ebP1,1(s ji)
)}
, (32)

g′C (d, sik ) = ed
(
P1,1(sik )P0,0(sik ) − P0,1(sik )P1,0(sik )

)
/
{(

edP1,0(sik ) − P0,0(sik )
) (

P0,1(sik ) − edP1,1(sik )
)}
. (33)

f (b(l+1)
ji |xi) =

∑
x j ∈{0,1}

∑
sj i ∈{0,1}

P(x j ) ×

P(s ji |x j, xi) f (b(l+1)
ji |s ji, x j, xi), (34)

f (d (l+1)
ik
|xi) =

∑
xk ∈{0,1}

∑
sik ∈{0,1}

P(xk ) ×

P(sik |xi, xk ) f (d (l+1)
ik
|sik, xi, xk ). (35)

Next, we consider to calculate the PDF f (t (l+1)
i |xi) from

f (b(l+1)
ji |xi) and f (d (l+1)

ik
|xk ).

Definition 6: Let fY1 ∗ fY2 denote the resulting PDF of the
convolution of two PDFs fY1 (y) and fY2 (y). Given a number
of PDFs fYi (y), i ∈ I, let

∏
i∈I
∗ fYi denote the result of the

convolution of these PDFs. □

Note that the PDF of the sum of two independent ran-
dom variables Y1 and Y2 can be calculated as the convolution
fY1 ∗ fY2 . From Definition 6 and Eq. (11), it follows that

f
T (l+1)
i |Xi

= f
T (0)
i |Xi

∗ *.,
∏

j∈Γ−1 (i)

∗ f
B(l+1)

j i |Xi

+/- ∗
*.,

∏
k∈Γ(i)

∗ f
D(l+1)

ik
|Xi

+/- .
(36)

From (11), (12) and (13), similarly, it follows that

f
A(l+1)
ik
|Xi
= f

T (0)
i |Xi

∗ *.,
∏

j′∈Γ−1 (i)

∗ f
B(l+1)

j′i |Xi

+/-
∗ *.,

∏
k′∈Γ(i)\{k }

∗ f
D(l+1)

ik′ |Xi

+/- , (37)

f
C (l+1)

j i |Xi
= f

T (0)
i |Xi

∗ *.,
∏

j′∈Γ−1 (i)\{ j }
∗ f

B(l+1)
j′i |Xi

+/-
∗ *.,

∏
k′∈Γ(i)

∗ f
D (l+1)

ik′ |Xi

+/- . (38)

Therefore, the PDFs corresponding to the variables in the
MAPDA can be calculated sequentially from above. As a
result, the diagnostic error probability PUER,i of a unit i ∈ U,
which is a probability that a unit i is incorrectly diagnosed
by the MAPDA, is calculated as follows.

PUER,i =

∫ 0

−∞
f
T (lmax )
i |Xi

(t |xi = 0)P(xi = 0)dt +∫ ∞

0
f
T (lmax )
i |Xi

(t |xi = 1)P(xi = 1)dt . (39)

From above argument, a proposed density evolution

algorithm to calculate the diagnostic error probability is as
follows.

[Density Evolution(DE) for MAP Diagnosis Algorithm ]
1) Let l := 0 and set Eq. (25) for all i ∈ U and j ∈ Γ−1(i), k ∈
Γ(i).

2) For all i ∈ U, execute the following steps.

i) For all j ∈ Γ−1(i) and k ∈ Γ(i), calculate Eqs. (34)
and (35).

ii) Calculate Eq. (36).
iii) For all j ∈ Γ−1(i) and k ∈ Γ(i), calculate Eqs. (37)

and (38).

3) If l +1 = lmax, then output PUER,i in Eq. (39) for all i ∈ U
and halt; otherwise set l := l + 1 and go to 2).

□

Here, we consider the complexity of the DE for the
MAPDA. In the DE, it is difficult to calculate the PDFs
exactly since the PDFs have continuous variables. There-
fore, using quantization of the continuous random variables,
we can calculate approximated PDFs by treating as the dis-
crete random variables. Let Q denote the number of quan-
tized values of the random variables A(l)

ji , B(l)
ji , C (l)

ji , D(l)
ji

and T (l)
i . Then the complexity of the convolution of two

PDFs is O(Q ln Q). The dominant complexity is the cal-
culation of step 2)-iii) in the DE for the MAPDA. Since
the complexity to calculate Eqs. (37) and (38) is at most
O(( |Γ−1(i) | + |Γ(i) |)Q ln Q), the total complexity of the DE
for the MAPDA is at most O(|E |NQ ln Q). Note that the
complexity of this algorithm doesn’t depend on the PMFs
P(xi = 1) and P(s ji |x j, xi). Therefore, the DE for the
MAPDA can calculate the diagnostic error probability much
faster than Monte Carlo simulation.

Next, we consider the case where the fault probabili-
ties P(xi = 1) are identical for all i and the probabilities
Px,x′ (s ji = 1) of test outcomes are identical for all edges
( j, i) ∈ E. Let k be the unit with the smallest number of
adjacent units, that is

k = arg min
i
{|Γ−1(i) | + |Γ(i) |}. (40)

If k and all units of Γ−1(k) ∪ Γ(k) are faulty, then it
is the most difficult case where MAPDA correctly diag-
nose the unit k since the reliability of test outcomes of
fault units is low†. This suggests that a unit with the
†P(xi = 1) < 0.5, P1,1(s ji = 1) ≤ P0,1(s ji = 1) and

P1,0(s ji = 0) < P0,0(s ji = 0) are assumed for the conventional
settings of the fault diagnosis problem.
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smallest number of adjacent units increases the diagnos-
tic error probability. Therefore, it is reasonable to set
|Γ−1(i) | = |Γ(i) | = m for all i ∈ U. Then f

B(l)
j i |Xi

are
identical for any i and j. f

D(l)
ik
|Xi

is also the same. There-
fore, it holds that f

A(l)
j i |Xj

= f
A(l)

j′i′ |Xj′
, f

C (l)
j i |Xi

= f
C (l)

j′i′ |Xi′

and f
T (l)
i |Xi

= f
T (l)
i′ |Xi′

for all ( j, i), ( j ′, i′) ∈ E. In this case,
we can significantly reduce the amout of computational com-
plexity and memory to obtain PDFs.

5. Simulation Results

In this section, we show the results of the computer simula-
tions for the evaluation of the MAPDA. And using the DE
for the MAPDA, a numerical analysis of the diagnostic error
probability is also shown.

For simplicity of the evaluation, we set |Γ−1(i) | =
|Γ(i) | = m for all i ∈ U, where m is a constant. Fur-
thermore, we assume that the fault probabilities of all units
and the probabilities of test outcomes of all edges are iden-
tical, i.e. P(xi = 1) = P(x j = 1) for any i, j ∈ U, and
Px,x′ (s ji = 1) = Px,x′ (slk = 1) for any ( j, i), (l, k) ∈ E and
x, x ′ ∈ {0, 1}.

To construct the testing graph G ∈ G (1) for the simu-
lation, we consider the adjacency matrix A = [Aji] of the
directed graph G = (U, E) ∈ G (1) , where

Aji =
1 ( j, i) ∈ E,

0 otherwise.
(41)

From the condition of |Γ−1(i) | = |Γ(i) | = m, it must hold
that ∑

j

Aji = m for all i, (42)∑
i

Aji = m for all j . (43)

If Aji = 1 for some j and i, then it holds that Ai j = 0 since
G ∈ G (1) . Using these properties, we show the algorithm to
construct G ∈ G (1) randomly.

[Construction Algorithm of G ]
1) Set Aji := 0 for all i and j; Wj := 0 for all j; ĩ := 1;
2) Choose J randomly such that |J | = m and

J ⊂ { j , ĩ |Wj < m} \ { j < ĩ |Aĩ j = 1}. (44)

If there is not such J, then go to step 1), otherwise set
Ajĩ := 1 and Wj++ for all j ∈ J.

3) If ĩ = N , then stop the algorithm, otherwise ĩ++ and go
to step 2). □

When this algorithm stop successfully, it holds that∑
i

Aji = Wj = m for all j, (45)

since |E | = mN and |E | can be divided by m. Then, it holds
that G ∈ G (1)†.

Figure 4 shows the result of the case where N = |U | =
100, m = 3, P0,0(0) = 1, P0,1(0) = 0, P1,0(0) = 0.5 and
P1,1(0) = 0.5. The horizontal and the vertical axes of Fig. 4
imply fault probability P(xi = 1) and the diagnostic error
probability per unit PUER, respectively. Dotted lines repre-
sent the results of Monte Carlo simulation. In the figure,
the result of MAPDA for each lmax = 1, 2, 3 is represented
as MAPDA(lmax). For comparison, the simulation results
of Opt2 and Opt3, which are the diagnosis algorithms pro-
posed by Lee et al. [17], are shown as LS Opt2 and LS
Opt3, respectively. Solid lines represent the numerical re-
sults of the DE for the MAPDA. Note that these lines present
the diagnostic error probability of the MAPDA for the case
where the testing graph is G ∈ G (L), L ≥ lmax. Then we set
the number of the quantized values as Q = 215. Similarly,
Fig. 5 shows the result of the case where N = 100, m = 7,
P0,0(0) = 1, P0,1(0) = 0.5, P1,0(0) = 0.5 and P1,1(0) = 0.5.

As lmax increases, PUER of the MAPDA(lmax) decreases
from Figs. 4 and 5. This implies that the MAPDA(lmax),
lmax > 1, is effective even when the testing graph G ∈ G (1) is
used††. Furthermore, the results of the MAPDA for lmax = 1
are superior to those of the LS Opt3. Similarly, the results
of the MAPDA for lmax ≥ 2 are superior to those of the LS
Opt2.

Next, the results of Monte Carlo simulation are al-
most identical to those of the DE for the MAPDA although
G ∈ G (1) is used in the simulation. This implies that
MAPDA(lmax) for G ∈ G (L) , lmax > L, is a good estima-
tor of ln P(xi=0 |s(lmax )

i )

P(xi=1 |s(lmax )
i )

. Note that we cannot engage that the

PUER of the MAPDA for lmax > 1 and G ∈ G (1) is close to
that of the DE for the MAPDA when P(xi = 1) is smaller
than Figs. 4 and 5. Therefore, the construction method of
G ∈ G (L), L > 1, is an important subject for study.

Finally, we show the comparison with our previous
method [18] for a testing sub-graph G̃(lmax)

i . Fig. 6 shows the
result of the case where N = |U | = 100, m = 3, P0,0(0) = 1,
P0,1(0) = 0, P1,0(0) = 0.5 and P1,1(0) = 0.5. Similarly,
Fig. 7 shows the result of the case where N = 100, m = 7,
P0,0(0) = 1, P0,1(0) = 0.5, P1,0(0) = 0.5 and P1,1(0) = 0.5.
From Figs. 4∼7, PUER of a proposed method is significantly
smaller than that of the previous method. Our previous
method uses only the information on the branches Ẽ (lmax)

i
that reaches unit i. On the otherhand, a proposed method ef-
fectively uses more information on the branches E (lmax)

i such
as Fig. 2. This makes the difference of PUER.
†This construction method of G ∈ G(1) is simple and fast if

the total number of units N is not small. However, it is difficult to
construct G ∈ G(L) for L > 1 by this method. Therefore, we use
only G ∈ G(1) for the simulation.
††MAPDA(lmax = 1) estimates x̂i by Eq. (18) from Theorem 4

since G ∈ G(1) . On the other hand, MAPDA(lmax), lmax = 2, 3,

estimates x̂i by the approximate value of ln P(xi=0 |s(lmax )
i )

P(xi=1 |s(lmax )
i )

for these

simulations.
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MAPDA(1)
LS Opt2
LS Opt3

Fig. 4 Diagnostic error probability per unit, where m = 3, P0,0 (0) = 1,
P0,1 (0) = 0, P1,0 (0) = 0.5 and P1,1 (0) = 0.5.
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MAPDA(3)
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MAPDA(2)
MAPDA(1)
LS Opt2
LS Opt3

Fig. 5 Diagnostic error probability per unit, where m = 7, P0,0 (0) = 1,
P0,1 (0) = 0.5, P1,0 (0) = 0.5 and P1,1 (0) = 0.5.

6. Conclusion

In this paper, for probabilistic diagnosis models, we showed
the MAPDA to calculate a posteriori probability that each
of units is faulty given the test outcomes. Furthermore, we
proposed the DE to analyze the diagnostic error probability
of the MAPDA. As a result, the results of Monte Carlo
simulation are almost identical to those of the DE for the
MAPDA even when G ∈ G (1) is used for the MAPDA. If
G ∈ G (L) can be constructed for a small constant L, then
the diagnostic error probability of MAPDA for lmax ≤ L is
exactly identical to that of the DE. To develop the method to
construct G ∈ G (L), L > 1, is needed in the future.

Here, we consider the case where the fault probabilities
P(xi = 1) are different depending on i. If the number of
units N is too large, it is difficult to use the proposed analysis
method described in Section 4 since the required memory
and computational complexity become too large. Given the
distribution of the fault probabilities, then, we may be able to

0.05 0.08 0.1 0.2

10−6

10−4

10−2

MAPDA(3) for G̃(3)
i

P(xi = 1)

PUER

MAPDA(2) for G̃(2)
i

MAPDA(1) for G̃(1)
i

Fig. 6 Diagnostic error probability for G̃(lmax )
i , where m = 3, P0,0 (0) =

1, P0,1 (0) = 0, P1,0 (0) = 0.5 and P1,1 (0) = 0.5.

10−3 10−2 10−1

10−6

10−4

10−2

MAPDA(3) for G̃(3)
i

P(xi = 1)

PUER

MAPDA(2) for G̃(2)
i

MAPDA(1) for G̃(1)
i

Fig. 7 Diagnostic error probability for G̃(lmax )
i , where m = 7, P0,0 (0) =

1, P0,1 (0) = 0.5, P1,0 (0) = 0.5 and P1,1 (0) = 0.5.

reduce the required memory and complexity by considering
the ensemble of random graphs like as modern coding theory
[30]. Furthermore, it may be possible to analyze the optimal
numbers of |Γ−1(i) | and |Γ(i) | according to P(xi = 1). These
are important future works.
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Appendix A: Proof of Theorem 1

Using Definitions 1, 4 and the marginal PMF, the following
equation holds for x ∈ {0, 1}.

P(xi = x |s(l+1)
i ) =
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x∈{0,1}N |xi=x
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From Definitions 1, 2 and 4, it follows that
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it follows that
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Therefore, the theorem follows. □

Appendix B: Proof of Theorem 3

We will use the inductive method. U (0)
i\h = {i}, E (0)

i\h = ∅
and s(0)

i\h is empty sequence from Definition 4. Therefore,
Eq. (16) holds for the step 1) of the MAPDA when l = 0.

Assuming Eq. (16) holds for certain l, from Eq. (16) it
follows that

P(x j = 0|s(l)
j\i)) =
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(A· 5)

P(x j = 1|s(l)
j\i)) = 1 − P(x j = 0|s(l)

j\i)). (A· 6)

Substituting Eqs. (A· 5) and (A· 6) to the right-hand side of
Eq. (7), from Eqs. (9) and (10) for all j ∈ Γ−1(i) and k ∈ Γ(i)
it follows that

ln
∑

x j
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ji , (A· 7)

ln
∑
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k\i)∑

xk P(sik |xi = 1, xk )P(xk |s(l)
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= d (l+1)

ik
. (A· 8)

As a result, Eq. (16) holds for l + 1 from Eq. (7) and the step
2) of MAPDA, and the theorem follows. □
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